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ABSTRACT: Accurate, detailed, and up-to-date 3D building models are important for several 

applications such as telecommunication network planning, urban planning, and military simulation. 

Existing building reconstruction approaches can be classified according to the data sources they use 

(i.e., single versus multi-sensor approaches), the processing strategy (i.e., data-driven, model-driven, 

or hybrid), or the amount of user interaction (i.e., manual, semiautomatic, or fully automated). While 

it is obvious that 3D building models are important components for many applications, they still lack 

the economical and automatic techniques for their generation while taking advantage of the available 

multi-sensory data and combining processing strategies. In this research, an automatic methodology 

for building modelling by integrating multiple images and LiDAR data is proposed. The objective of 

this research work is to establish a framework for automatic building generation by integrating data-

driven and model-driven approaches while combining the advantages of image and LiDAR datasets. 

 

1. INTRODUCTION 

Accurate, detailed, and up-to-date 3D topographic information, including building models, 

are quite valuable for several applications. Natural disasters aftermath evaluation, search 

and rescue, urban planning, environmental studies, and military simulation are just 

examples where accurate digital building models are useful. With more accessible location-

based services and personal navigation to the general public, the need for automated, 

realistic, and efficiently generated 3D models has become more urgent than ever (Brenner, 

2005). Considering that the United Nations reported that more than 60% of the global 

population by 2030 will dwell in urban areas, up-to-date accurate 3D city models are 

required to properly plan for and accommodate this urban growth (UN-HABITAT, 2006). 

While it is obvious that 3D building models are important components, they still lack the 

economic and reliable techniques for their generation while taking advantage of the 

available multi-sensory data from single and multiple platforms. 

 

Existing building reconstruction approaches can be classified according to the data sources 

they use (single versus multi-source approaches), the processing strategy (data-driven, 

model-driven, or hybrid) and the amount of user interaction (manual, semiautomatic, or 

fully automated) (Vosselman and Mass, 2010). Many research efforts have been conducted 

on building extraction over the last 20 years aiming at reducing the cost of producing 

models with a reasonable level of detail.  
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In terms of data source, aerial imagery has been and still is one of the common sources to 

obtain 3D building models based on traditional photogrammetric approaches. Despite the 

significant research efforts in the past, the low degree of automation remains as the major 

problem (Brenner, 2005). Thus, most of the current techniques have mainly relied on  

semi-automatic systems, in which recognition and interpretation tasks are performed by an 

operator, whereas modelling and precise measurement are supported through automation. 

Meanwhile, Light Detection And Ranging (LiDAR) has emerged as an important source of 

data for the generation of 3D city models due to the direct acquisition of reliable and dense 

3D point cloud. While LiDAR has a great advantage of direct acquisition of three 

dimensional coordinates of points (thus, eliminating the need for the matching procedure), 

the positional nature of LiDAR data collection makes it difficult to derive semantic 

information from the captured surfaces. Moreover, the quality of the derived boundaries is 

inversely proportional to the point density. The integration of LiDAR data and aerial 

imagery provides more accurate solutions by combining the accurate height measurements 

of laser scanner and the planimetric accuracy of aerial images (Awrangjeb et al. 2010). The 

integration preserves the advantages of both datasets such as high-resolution texture and 

colour information from images together with intensity, height information, and potential 

higher automation from LiDAR data. Due to these advantages of integration, several 

researchers suggested integrating LiDAR and imagery for building detection (Cheng et al., 

2008; Demir et al., 2009; Habib et al., 2010b to mention few).  

 

In this research, an automatic methodology for building extraction and modelling by 

integrating multiple images and LiDAR data is proposed. In the following section, the 

detailed explanation of the proposed methodology is presented. In section 3 and 4, 

preliminary results and concluding remarks are mentioned, respectively.  

 

2. METHODOLOGY 

The reconstruction of the buildings can be carried out using three different approaches: 

Data-driven method (bottom-up), model-driven method (top-down) or hybrid method  

(Faig and Widmer, 2000; and Vosselman and Maas, 2010). The differences between the 

three approaches are manifested on how much relevant information regarding buildings is 

implemented during each process.  

 

Data-driven approaches do not make assumptions regarding the building shapes in most 

cases using generic models. It has an advantage that it can model any shape of buildings, 

but at the same time the little knowledge of the models makes its implementation complex. 

Therefore, it leaves the question of how constraints and sets of rules should be imposed 

such as rectangularity, parallelism, etc (Brenner, 2005). Model-based approach uses 

parametric building models which are used as a hypothesis and verifies the model using 

information derived from the existing data. It predefines different basic building models in 

a database and the best fit model to the data is selected. Model-based methods are mostly 

implemented in a semi-automatic manner and use information from images. While the 

model-image fitting is solved automatically, the selection of a target model and an initial 

alignment of the model to the image are carried out manually by an operator  

(Tseng and Wang, 2003; Suveg and Vosselman, 2004). 
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The objective of this research work is to establish a framework for automatic building 

model generation by integrating data-driven and model-driven method while combining the 

advantages of image and LiDAR datasets. The proposed methodology can construct 

complex structures, which are comprised of a collection of rectangular primitives; however, 

this paper focuses on proposing a framework for automatic building model generation. 

Therefore, the whole process will be investigated using simple rectangular primitive.  

The developed procedures are comprised of three stages: 1) Pre-requsites, 2) Building 

segmentation and boundary generation from LiDAR data through a data-driven approach, 

and 3) Model-based image fitting of rectangular primitives. Fig. 1 illustrates the procedures 

in the proposed framework in this research. The following sections 2.1, 2.2, and 2.3 will 

give more details about the three procedures.  

 

 
 

Fig. 1.The proposed framework for automatic building generation 

 

2.1 Pre-requisites  

To make use of the synergetic properties of combined photogrammetric and LiDAR data, 

the following prerequisite processes should be performed which are Quality Assurance 

(QA) of photogrammetric and LiDAR data, Quality Control (QC) of photogrammetric and 

LiDAR data, and co-registration of both dataset. The key activity in QA is the calibration 

procedure. To achieve the desired quality of final products, all the individual system 

components should be accurately calibrated and also the relationship between the various 

system components should be accurately estimated. For the photogrammetric system, 

Interior Orientation Parameters (IOP) is determined through a camera calibration process 

and spatial and rotational offsets between various system components (e.g., camera, GNSS 

and INS) are derived through total system calibration. A typical LiDAR acquisition system 

is composed of Global Positioning System (GPS), Inertial Navigation System (INS), and 
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laser scanning system. The calibration of a LiDAR system aims at the estimation of 

systematic errors in the system parameters (e.g., bore-sighting parameters). In this research, 

the camera and LiDAR systems are calibrated by adopting the approaches in Habib et al. 

(2006) and Habib et al. (2010a), respectively. QC is a post-mission procedure to verify 

whether the desired quality (i.e., data integrity, correctness, and completeness) has been 

achieved. This research adopts the QC method suggested by Habib et al. (2010a). This 

method utilizes linear features and patches extracted in a semi-automatic way and is based 

on the assumption that conjugate features from different strips should be collinear and 

coplanar in the absence of biases. Once the QA and QC of photogrammetric and LiDAR 

data verify the quality of the datasets, the data can be used with confidence. Since two 

datasets from different sources are utilized, they must be registered to a common reference 

frame. Photogrammetric geo-referencing is the process of defining the camera’s position 

and attitude relative to the object space coordinate system at the moment of exposure. 

LiDAR data can be utilized as a source of control for photogrammetric geo-referencing.  

In previous work (Habib et al., 2008), we confirmed the feasibility of using the linear and 

areal features derived from LiDAR data as a source of control for photogrammetric geo-

referencing. Therefore, in this research, the photogrammetric geo-referencing method 

proposed in Habib et al. (2008), is used. Straight-lines and planar patches are extracted 

from LiDAR data in a semi-automatic way and used as the registration primitives for 

photogrammetric and LiDAR dataset registration. Point-based bundle adjustment processes 

with modified weight matrices are used to incorporate linear and planar features  

(Habib et al., 2010a). 

 

2.2 Model primitive generation: Data-Driven approach 

This section discusses data-driven procedures to generate initial building model primitives 

(i.e., rectangular boundaries) from LiDAR dataset, which later will be used as an input 

model during the model-based image fitting process. The model primitive generation starts 

with hypothesizing potential buildings by differentiating buildings from other objects in the 

original LiDAR point clouds. A fully automated region grouping and merging segmentation 

algorithm has been developed for the processing of LiDAR data. The boundary of the plane 

segmentation results are traced and regularised to identify rectangles that best represent 

rooftop of the buildings. 

 

2.2.1.Building segmentation: 

 

Building segmentation focuses on the extraction of planar rooftops from LiDAR data.  

The utilized algorithm employs a sequential least squares plane fitting for optimal 

performance. We randomly select 5% of the LiDAR point cloud as seed points for the 

region growing process. For each seed point, n-neighboring points will be used for the 

initial plane fitting. If the standard deviation of the fitted plane is less than LiDAR-reported 

point Root Mean Square (RMS) error, the region growing starts. A normal distance to the 

plane from neighboring n points for every point in the group is checked and using accepted 

points, the plane parameters are updated after every point is accepted. This process is 

repeated until no more points are added to the plane. The group of planar patches 

containing the largest number of neighboring planes is considered as ground, and the rest is 

considered as building features which will be utilized for our research.  
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2.2.2.Boundary generalisation: 

 

As a result of the segmentation process, planar patches constituting rooftops are derived 

and plane parameters (a, b, c, where, Z � �� � �� � � ) of each plane are stored for the 

model-based image fitting procedure. To obtain the boundary of the identified planes, a 

modified convex hull method is applied on the segmented planes (Sampath and Shan, 

2007). It should be noted that the derived boundaries from the segmented planes do not 

represent the actual boundaries of the physical objects due to the relatively low sampling 

rate of airborne LiDAR systems. To present the actual shape of the boundaries, the traced 

boundary from LiDAR should be regularized. Considering the target building shape of this 

research (i.e., building composed of sets of rectangles), it can be regularized as several 

rectangles that represent the rooftop of the building boundaries. For this purpose, the 

Minimum Bounding Rectangle (MBR) algorithm is introduced (Freeman and Shapira, 

1975; Chaudhuri and Samal, 2007). The MBR derived rectangle is represented by the 

minimum and maximum coordinate values for the boundary points in 2D. It is determined 

by choosing the minimum area rectangle among the rectangles with an arbitrary orientation 

that contains the vertices of boundaries. Fig. 2 presents aerial image of a rectangular 

building (a), its segmentation result (b) and its initial boundary (c). As seen in Fig. 2 (d), 

traced boundary of a simple rectangle building from LiDAR segmentation is regularized as 

a rectangle which contains all the vertices of boundaries. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2. aerial image (a), segmented LiDAR patch (b), traced boundary (c),  

and regularized boundary (d). 

Model-based automatic 3D building model generation by integrating LiDAR and aerial images  

 

 



192 

 

2.3 Model-based image fitting: Model-based approach 

From the previous data-driven building detection procedure using LiDAR data, the initial 

model primitives are derived. This model will be adjusted to improve the horizontal 

accuracy while keeping the high LiDAR vertical accuracy by integrating image 

information. Although image-based boundary detection algorithms give higher quality, the 

matching ambiguities in multiple images remain as the main obstacle. In this regard, 

 the rectangular model primitives defined from LiDAR data are incorporated to restrict the 

search space and resolve the matching ambiguities in multiple images. The parameters that 

define the models are adjusted using detected edges in the imagery by minimizing the 

normal distance between the detected edges and the projected ones through least-squares 

adjustment procedure that can simultaneously handle several images.  

 

2.3.1. Building modelling and parameter estimation:  

 

According to the constructive solid geometry (CSG) principle, each primitive should be 

associated with some parameters to adjust its geometric properties. These parameters are 

categorized into pose and shape parameters. Pose parameters define the position and 

orientation of the model primitives in object space using 3 translation parameters (�	, �	, 

�	) and 3 rotation parameters (ω, φ, κ) as seen in Fig. 14. Previous literatures (Tseng and 

Wang, 2003; Suveg and Vosselman, 2004) suggest, since buildings stand vertical with 

horizontal rooftop, ω, φ are not considered and only use a rotation angle around Z-axis (κ). 

For more general building models (i.e., not only horizontal rooftops), ω, φ angles can be 

calculated using the orientation of the normal to the planar surface as defined by LiDAR 

segmentation. 

 

 
Fig. 14. Definition of pose and shape parameters 

 

The shape parameters are associated with shape and size of the model; therefore, different 

models will be represented using different shape parameters (Tseng and Wang, 2003). Solid 
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box primitive, the most popular basic model primitive, is able to represent a building with 

the shape parameters of length (ℓ), width (�) and height (�). However, in the imagery, 

there is no guarantee that both roof top and bottom of the building are shown all the time, 

so � is hard to be determined from imagery only. In addition, it is known that the vertical 

position accuracy of LiDAR data is higher than the horizontal one, which suggests that  

the elevation of the building roof patch generated from LiDAR data is more reliable than 

the derived boundaries themselves. Therefore, in this research, � is determined using 

LiDAR data. By utilizing rectangular primitive, complex buildings that are comprised of 

rectangles and gable-roofs can be reconstructed. Therefore, in this research, the related 

parameters that define the rectangular primitives are reduced into 3 pose parameters 

(�	, �	,κ) and 2 shape parameters (ℓ and �). These five parameters would be refined 

through the image-model fitting. One should note that we already have a good estimation of 

the initial values of the five parameters from LiDAR data. A rectangular primitive derived 

from LiDAR data is transformed into image coordinate system to integrate image 

information using already known EOPs and IOPs from Section 2.1.  

 

2.3.2. Building rooftop decomposition:  

 

As mentioned before, CSG can be used to construct complex building models by 

combining a set of basic primitives. In this work, automatic modelling of complex buildings 

using rectangular primitives is introduced. The question remaining is how to decompose 

complex structures into several basic primitives automatically. To decompose the initial 

model primitives into simple rectangular primitives, two conditions should be considered. 

First, the decomposition process should divide a regularized boundary into a collection of 

rectangles such that a portion or the entire length of the four sides for each rectangle must 

overlap with the physical building edges. This condition is necessary to have edge 

information from all sides in the images. Another consideration would be to minimize the 

number of involved model parameters for the image-fitting process as well as reducing the 

amount of needed post-processing (i.e., establishing the common reference point (�	, �	) 

and orientation angle (κ)). The parameters of all the decomposed primitives would be 

adjusted simultaneously during the model-based image fitting process.  

 

2.3.3. Edge detection and linking:  

 

Fig. 4(a) depicts the projected rectangular model primitive under consideration into the 

imagery using the provided EOP, IOP and initial model parameters. The initial model 

parameters are acquired from LiDAR data segmentation and regularization, so the initial 

projection should be close to the actual outlines of the building roof on the aerial photo.  
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(a) (b) 

Fig. 4. Projected rectangular model primitive onto the image space (a), and the effective buffer zone 

for one of the edges (b) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 5. aerial photo over the area of interest (a), canny edge detection (b),edge linking (different 

grouped lines are in different colours) (c), and extracted edges after filtering (d) 
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Based on the initial projection of the model onto the images, a buffer is set around each 

edge of the rectangle and only edge pixels within the buffer are utilized for the next step 

(Fig. 4(b)). All the extracted edges from images do not necessarily represent the rooftop 

boundaries due to occlusions, noise or irrelevant features near or on the roofs. Inadequate 

edge information may lead to the wrong solution for the model-image fitting. Therefore, 

selecting true edge information is important. Discrete edge points are first detected by 

applying the Canny edge detector (Canny, 1986) to the multiple images in which the 

building appears. Canny edge detector is one of the most common edge detection methods 

used in the image processing research which theoretically produces thin edges close to  

the true edges. However, as seen in Fig. 5(b) it produces unnecessary edges because of 

noise, non-uniform illuminations, and shadows. Therefore, the edge pixels that do not have 

similar direction to the LiDAR derived line are not considered by utilizing gradient angle 

information as it relates to the orientation of the projected boundaries. To remove 

unnecessary small segments, edge linking is performed on the edge pixels and segments 

whose length is smaller than a given threshold are removed. This process is applied to all 

the images where the building primitive appears in. Fig. 5(c) shows edge linking results 

where different colours represent different linked edge groups. The filtered edge pixels 

which exceed a predefined length and have similar direction to initial LiDAR lines within 

the buffer area are seen in Fig. 5(d). When compared with Fig. 5(b) (detected edges using 

canny operator), unnecessary edge information is removed.  

 

2.3.4. Optimal model-image fitting:  
 

The principle of model-image fitting is to adjust the unknown model parameters until the 

model fits to the edges extracted from the corresponding images. This is achieved by 

adding observation equations that minimize the normal distance between the detected edge 

pixels within the buffer and the projected line from LiDAR data while refining the model 

parameters. Each selected pixel !"# contributes one set of observation equations assuming 

that one of the vertex points of the rectangle (��) and edge pixel (!"#) are conjugate in  

Fig. 6. These points will be referred to as pseudo-conjugate points.  

 
Fig. 6. Pseudo-point correspondence between the vertex of the rectangle and edge pixels 
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However, the vertex point (��) and the edge points(!"#) are not corresponding to each other 

and have a discrepancy vector ) between them. Additional unknown vector, ), is 

introduced by using non-conjugate points which are located along same lines. The 

mathematical model describing the discrepancy between pseudo conjugate points will take 

the form in Equation (1). The stochastic model describing the mathematical relationship 

among pseudo-conjugate points can be represented by the Gauss Markov Stochastic model 

in Equation (1).  

 � *� � ) � +      +~(0, -)       ./+0+  -

� 12
345� 

(1) 

 

In order to use the model in Equation (1) while eliminating the unknown vector D from the 

parameters to be estimated, a modified least square adjustment procedure is developed 

(Habib et al. 2010a). The modification starts by changing the stochastic properties of the 

random noise vector as represented by Equation (2). The new weight matrix 4% of the noise 

vector is chosen such that 4%) � 0 

-`6+7 �  12
3 4%�  where   4%) � 0 (2) 

 

Therefore, the modified variance-covariance matrix will be represented as follows Σ`6+7 �

 12
3 4%�, where the plus sign indicates the Moore-Penrose pseudo inverse. Starting from the 

modified weight matrix, the LSA target function can be redefined as in Equation (3). Thus, 

the solution (�<) to the LSA target function is defined by Equation (4). Using the law of 

error propagation, the variance covariance matrix of the solution vector, Σ6�<7, is shown in 

Equation (5). Finally the a-posteriori variance factor( 1<2
3) is estimated according to 

Equation (6), where q is the rank of the modified weight matrix 4`and m is the number of 

unknown (refer to Habib et al. 2010a for the detailed derivation). 

 

+>4`+ � ( ? *� ? ))>4`( ? *� ? )) 

� ( ? *�)>4`( ? *�)@� ABC|E 
(3) 

 

�< � (*>4`*)5�*>4` � F5�*>4`  (4) 

  

-6�<7 � 12
3F5� (5) 

 

1<2
3 � ( ? *�<)>4`( ? *�<)/(H ?A) (6) 

 

Thus, the modification in the weights of the noise vector allows for the elimination of the 

additional unknown vector, D, while having almost no impact on the traditional LSA (i.e., 

the solution is obtained using the traditional solution for the Gauss Markov Model in the 

absence of the additional unknown vector D resulting from the use of pseudo-conjugate 

points along a corresponding point-line pair.  

 

3. EXPERIMENTAL RESULTS 

In this paper, fully-automatic 3D building model generation methodology is proposed by 

providing the initial rectangular model primitive from LiDAR data and adjusting the initial 
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model through model-based image fitting process. To test the validity of the proposed 

methodology, preliminary results using a rectangular building is presented in this section.  

 

3.1 Dataset Description 

The dataset used in the experiments is captured over the British Colombia Institute of 

Technology (BCIT) in Vancouver. The dataset includes multiple aerial images and airborne 

LiDAR data collected over the same area. A brief description of the dataset is given in 

Table 1.  
Tab. 1. Dataset specifications 

 

 Photogrammetric data LiDAR data 

System MFDC Rollei P-65 Leica ALS50 

Average flying height 540 and  1,150 m 540 and 1,150 m 

GSD (image) 

Average point density 

(LiDAR) 

5 and 10 cm 1.5 and 4.0 pts/m2 

 

3.2 Model-image fitting result 

To test the model-based image fitting algorithm, a simple rectangular building that appears 

in 3 images is selected from the BCIT dataset. Fig. 7 shows an aerial image over the target 

building and initial traced boundary respectively. 

 
Fig. 7. aerial image over area of interest (a), and initial LiDAR boundary (b) 

 

Based on the result from Fig. 7(b), the MBR is derived and the initial parameters are 

acquired. Fig. 8 shows the projected MBR onto the images (in red) and the extracted edge 

pixels (in yellow) within the defined buffer from the three images. Note that we can use as 

many images as available. Even though the initial position derived from LiDAR data is 

quite close to the actual boundary, there are deviations in some edges which need 

improvement. 
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(a) (b) (c) 

Fig. 8. Projection of the rectangular primitive using LiDAR-based initial parameters onto three 

images (a), (b), (c) 

 

After the automatic model-image fitting procedure, the final adjusted rectangular primitive 

is projected onto the three images in Fig. 9.  

 

 
(a) (b) (c) 

Fig. 9. Projection of the rectangular primitive after model-based image fitting onto three images (a), 

(b), (c) 

 

When visually checked, the rectangular primitive is adjusted close to the extracted edge 

pixels from images. Although this algorithm can be applied using a single image, increasing 

number of images would provide different views of the same buildings, so the adjusted 

result will be more reliable and robust to potential occlusions. Table 2 presents the initial 

values of the pose/shape parameters, final adjusted values, and standard deviations from 

Equation (5). The standard deviations of adjusted parameters are all within acceptable range 

considering that GSD is 10cm. The standard deviation of ℓ value is slightly higher than 

other parameters, because the two images show the walls of the building along the ℓ sides 

which might include edge pixels from the side walls. The extracted edge pixels have a great 

effect on the accuracy of the final model primivites, therefore, additional algorithm for 

extracting only relavant edges need to be implemented.  
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Tab. 2. Original and estimated values for the unknown model parameters and their standard deviation 

 

Unknown 

Parameter 

Initial value 

from LiDAR 

data 

Final value 

after adjustment 

Standard 

deviation of 

adjusted 

parameters 

�	 (m) 500238 500239.626 0.008 

�	 (m) 5455402 5455404.374 0.007 

� (m) 10 11.571 0.007 

ℓ (m) 42 43.823 0.012 

κ (°) -138 -142.133 0.008 

 

4. CONCLUSIONS AND FUTURE WORK 

The advantage of the proposed approach is that it can utilize any number of images and 

overcome the limitation of occlusions which are the most common problem when dealing 

with large scale imagery. The initial approximation values for the models are derived 

automatically from LiDAR data, which eliminates the need for human intervention as 

opposed to what is implemented in previous studies. Complex models can be partitioned 

into simple rectangular primitives automatically which will be addressed in future 

publications. The research will lead to a practical and economic platform for Geographic 

Information System (GIS) compilation and a reliable 3D model generation. While utilizing 

existing available data and minimizing the human interaction, which translates into reduced 

cost and the need for technical expertise, the proposed procedure maintains the quality of 

the end product. 
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